Microstructural and rheological investigation of upcycled metal-organic frameworks stabilized Pickering emulsions

نویسندگان

چکیده

Stabilizing Pickering emulsions with metal-organic frameworks (MOFs) is a known way to incorporate them into hierarchically porous materials. Studies generally focus on their final properties and emulsion microstructures are rarely precisely described. Our hypothesis was that characterizing the microstructural rheological of stabilized solely by Al-based MOFs (MIL-96) particles would provide insights how control stability workability for potential industrial applications. MIL-96(Al) particles, obtained from Li-ion battery waste were used stabilize paraffin-in-water emulsions. The influence formulation parameters (paraffin/water volume ratio content) investigated analysed using optical microscopy, cryo-scanning electron microscopy measurements. efficiently up 80% internal phase. low paraffin fraction had large droplets fluid gel-like texture. higher fractions more compact two-step flow curves. In this system, excess aggregated in continuous phase as flocs interact adsorbed at paraffin-water interface, creating secondary network has be broken resume. This behaviour may interesting investigate other MOF-stabilized

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-internal-phase emulsions stabilized by metal-organic frameworks and derivation of ultralight metal-organic aerogels

To design high-internal-phase emulsion (HIPE) systems is of great interest from the viewpoints of both fundamental researches and practical applications. Here we demonstrate for the first time the utilization of metal-organic framework (MOF) for HIPE formation. By stirring the mixture of water, oil and MOF at room temperature, the HIPE stabilized by the assembly of MOF nanocrystals at oil-water...

متن کامل

Nanocellulose-stabilized Pickering emulsions and their applications

Pickering emulsion, which is an emulsion stabilized by solid particles, offers a wide range of potential applications because it generally provides a more stable system than surfactant-stabilized emulsion. Among various solid stabilizers, nanocellulose may open up new opportunities for future Pickering emulsions owing to its unique nanosizes, amphiphilicity, and other favorable properties (e.g....

متن کامل

Protein-Stabilized Emulsions and Whipped Emulsions: Aggregation and Rheological Aspects

By exploiting the combined gelling and stabilizing properties of the milk protein casein, creamy foam structures can be made by whipping air into a matrix of flocculated protein-coated emulsion droplets. Acidified sodium caseinate-stabilized emulsions based on liquid triglyceride oil give rise to elastic foams of low rigidity and high apparent fracture strain. Replacing all-liquid droplets with...

متن کامل

Pickering emulsions stabilized by surface-modified Fe3O4 nanoparticles.

Unmodified Fe(3)O(4) nanoparticles do not stabilize Pickering emulsions of a polar oil like butyl butyrate. In order to obtain stable emulsions, the Fe(3)O(4) nanoparticles were modified by either carboxylic acid (RCOOH) or silane coupling agents (RSi(OC(2)H(5))(3)) to increase their hydrophobicity. The influence of such surface modification on the stability of the resultant Pickering emulsions...

متن کامل

Thermodynamically stable pickering emulsions.

We show that under appropriate conditions, mixtures of oil, water, and nanoparticles form thermodynamically stable oil-in-water emulsions with monodisperse droplet diameters in the range of 30-150 nm. This observation challenges current wisdom that so-called Pickering emulsions are at most metastable and points to a new class of mesoscopic equilibrium structures. Thermodynamic stability is demo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Colloid and Interface Science

سال: 2021

ISSN: ['1095-7103', '0021-9797']

DOI: https://doi.org/10.1016/j.jcis.2020.10.093